Can one salty meal raise blood pressure

1. Intersalt Cooperative Research Group An international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. BMJ. 1988;297:319–328. doi: 10.1136/bmj.297.6644.319. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Mente A., O’Donnell M.J., Rangarajan S., McQueen M.J., Poirier P., Wielgosz A., Morrison H., Li W., Wang X., Di C., et al. Association of urinary sodium and potassium excretion with blood pressure. N. Engl. J. Med. 2014;371:601–611. doi: 10.1056/NEJMoa1311989. [PubMed] [CrossRef] [Google Scholar]

3. He F.J., MacGregor G.A. Effect of modest salt reduction on blood pressure: A meta-analysis of randomized trials. Implications for public health. J. Hum. Hypertens. 2002;16:761–770. doi: 10.1038/sj.jhh.1001459. [PubMed] [CrossRef] [Google Scholar]

4. Denton D., Weisinger R., Mundy N.I., Wickings E.J., Dixson A., Moisson P., Pingard A.M., Shade R., Carey D., Ardaillou R., et al. The effect of increased salt intake on blood pressure of chimpanzees. Nat. Med. 1995;1:1009–1016. doi: 10.1038/nm1095-1009. [PubMed] [CrossRef] [Google Scholar]

5. World Health Organization . Guideline: Sodium Intake for Adults and Children. World Health Organization; Geneva, Switzerland: 2012. [Google Scholar]

6. Weinberger M.H. Salt sensitivity of blood pressure in humans. Hypertension. 1996;27:481–490. doi: 10.1161/01.HYP.27.3.481. [PubMed] [CrossRef] [Google Scholar]

7. Strazzullo P., D’Elia L., Kandala N.B., Cappuccio F.P. Salt intake, stroke, and cardiovascular disease: Meta-analysis of prospective studies. BMJ. 2009;339:b4567. doi: 10.1136/bmj.b4567. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Whelton P.K., He J. Health effects of sodium and potassium in humans. Curr. Opin. Lipidol. 2014;25:75–79. doi: 10.1097/MOL.0000000000000033. [PubMed] [CrossRef] [Google Scholar]

9. He F.J., Li J., Macgregor G.A. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ. 2013;346:f1325. doi: 10.1136/bmj.f1325. [PubMed] [CrossRef] [Google Scholar]

10. Girardin E., Caverzasio J., Iwai J., Bonjour J.P., Muller A.F., Grandchamp A. Pressure natriuresis in isolated kidneys from hypertension-prone and hypertension-resistant rats (Dahl rats) Kidney Int. 1980;18:10–19. doi: 10.1038/ki.1980.105. [PubMed] [CrossRef] [Google Scholar]

11. Dajnowiec D., Langille B.L. Arterial adaptations to chronic changes in haemodynamic function: Coupling vasomotor tone to structural remodelling. Clin. Sci. 2007;113:15–23. doi: 10.1042/CS20060337. [PubMed] [CrossRef] [Google Scholar]

12. Dumont O., Pinaud F., Guihot A.L., Baufreton C., Loufrani L., Henrion D. Alteration in flow (shear stress)-induced remodelling in rat resistance arteries with aging: Improvement by a treatment with hydralazine. Cardiovasc. Res. 2008;77:600–608. doi: 10.1093/cvr/cvm055. [PubMed] [CrossRef] [Google Scholar]

13. Marketou M.E., Maragkoudakis S., Anastasiou I., Nakou H., Plataki M., Vardas P.E., Parthenakis F.I. Salt-induced effects on microvascular function: A critical factor in hypertension mediated organ damage. J. Clin. Hypertens. 2019;21:749–757. doi: 10.1111/jch.13535. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Kurtz T.W., DiCarlo S.E., Pravenec M., Morris R.C., Jr. The American Heart association scientific statement on salt sensitivity of blood pressure: Prompting consideration of alternative conceptual frameworks for the pathogenesis of salt sensitivity? J. Hypertens. 2017;35:2214–2225. doi: 10.1097/HJH.0000000000001458. [PubMed] [CrossRef] [Google Scholar]

15. Elijovich F., Weinberger M.H., Anderson C.A., Appel L.J., Bursztyn M., Cook N.R., Dart R.A., Newton-Cheh C.H., Sacks F.M., Laffer C.L., et al. Salt sensitivity of blood pressure: A scientific statement from the american heart association. Hypertension. 2016;68:e7–e46. doi: 10.1161/HYP.0000000000000047. [PubMed] [CrossRef] [Google Scholar]

16. Thomas M.C., Moran J., Forsblom C., Harjutsalo V., Thorn L., Ahola A., Waden J., Tolonen N., Saraheimo M., Gordin D., et al. The association between dietary sodium intake, ESRD, and all-cause mortality in patients with type 1 diabetes. Diabetes Care. 2011;34:861–866. doi: 10.2337/dc10-1722. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Saulnier P.J., Gand E., Hadjadj S., Group S.S. Sodium and cardiovascular disease. N. Engl. J. Med. 2014;371:2135–2136. doi: 10.1056/NEJMc1412113. [PubMed] [CrossRef] [Google Scholar]

18. O’Donnell M., Mente A., Rangarajan S., McQueen M.J., Wang X., Liu L., Yan H., Lee S.F., Mony P., Devanath A., et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N. Engl. J. Med. 2014;371:612–623. doi: 10.1056/NEJMoa1311889. [PubMed] [CrossRef] [Google Scholar]

19. Mente A., O’Donnell M., Rangarajan S., Dagenais G., Lear S., McQueen M., Diaz R., Avezum A., Lopez-Jaramillo P., Lanas F., et al. Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: A pooled analysis of data from four studies. Lancet. 2016;388:465–475. doi: 10.1016/S0140-6736(16)30467-6. [PubMed] [CrossRef] [Google Scholar]

20. Graudal N., Jurgens G., Baslund B., Alderman M.H. Compared with usual sodium intake, low- and excessive-sodium diets are associated with increased mortality: A meta-analysis. Am. J. Hypertens. 2014;27:1129–1137. doi: 10.1093/ajh/hpu028. [PubMed] [CrossRef] [Google Scholar]

21. Catanozi S., Rocha J.C., Passarelli M., Guzzo M.L., Alves C., Furukawa L.N., Nunes V.S., Nakandakare E.R., Heimann J.C., Quintao E.C. Dietary sodium chloride restriction enhances aortic wall lipid storage and raises plasma lipid concentration in LDL receptor knockout mice. J. Lipid Res. 2003;44:727–732. doi: 10.1194/jlr.M200330-JLR200. [PubMed] [CrossRef] [Google Scholar]

22. Graudal N.A., Galloe A.M., Garred P. Effects of sodium restriction on blood pressure, renin, aldosterone, catecholamines, cholesterols, and triglyceride: A meta-analysis. JAMA. 1998;279:1383–1391. doi: 10.1001/jama.279.17.1383. [PubMed] [CrossRef] [Google Scholar]

23. Brunner H.R., Laragh J.H., Baer L., Newton M.A., Goodwin F.T., Krakoff L.R., Bard R.H., Buhler F.R. Essential hypertension: Renin and aldosterone, heart attack and stroke. N. Engl. J. Med. 1972;286:441–449. doi: 10.1056/NEJM197203022860901. [PubMed] [CrossRef] [Google Scholar]

24. Grassi G., Dell’Oro R., Seravalle G., Foglia G., Trevano F.Q., Mancia G. Short- and long-term neuroadrenergic effects of moderate dietary sodium restriction in essential hypertension. Circulation. 2002;106:1957–1961. doi: 10.1161/01.CIR.0000033519.45615.C7. [PubMed] [CrossRef] [Google Scholar]

25. Petrie J.R., Morris A.D., Minamisawa K., Hilditch T.E., Elliott H.L., Small M., McConnell J. Dietary sodium restriction impairs insulin sensitivity in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 1998;83:1552–1557. doi: 10.1210/jc.83.5.1552. [PubMed] [CrossRef] [Google Scholar]

26. Garg R., Williams G.H., Hurwitz S., Brown N.J., Hopkins P.N., Adler G.K. Low-salt diet increases insulin resistance in healthy subjects. Metabolism. 2011;60:965–968. doi: 10.1016/j.metabol.2010.09.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Nakandakare E.R., Charf A.M., Santos F.C., Nunes V.S., Ortega K., Lottenberg A.M., Mion D., Jr., Nakano T., Nakajima K., D’Amico E.A., et al. Dietary salt restriction increases plasma lipoprotein and inflammatory marker concentrations in hypertensive patients. Atherosclerosis. 2008;200:410–416. doi: 10.1016/j.atherosclerosis.2007.12.034. [PubMed] [CrossRef] [Google Scholar]

28. Grassi G., Cattaneo B.M., Seravalle G., Lanfranchi A., Bolla G., Mancia G. Baroreflex impairment by low sodium diet in mild or moderate essential hypertension. Hypertension. 1997;29:802–807. doi: 10.1161/01.HYP.29.3.802. [PubMed] [CrossRef] [Google Scholar]

29. Cook N.R. Sodium and cardiovascular disease. N. Engl. J. Med. 2014;371:2134. doi: 10.1056/NEJMc1412113. [PubMed] [CrossRef] [Google Scholar]

30. Batuman V. Sodium and cardiovascular disease. N. Engl. J. Med. 2014;371:2134–2135. doi: 10.1056/NEJMc1412113. [PubMed] [CrossRef] [Google Scholar]

31. Hall J.E., Guyton A.C., Coleman T.G., Mizelle H.L., Woods L.L. Regulation of arterial pressure: Role of pressure natriuresis and diuresis. Fed. Proc. 1986;45:2897–2903. [PubMed] [Google Scholar]

32. Rapp J.P., Dene H. Development and characteristics of inbred strains of Dahl salt-sensitive and salt-resistant rats. Hypertension. 1985;7:340–349. doi: 10.1161/01.HYP.7.3.340. [PubMed] [CrossRef] [Google Scholar]

33. Kawasaki T., Delea C.S., Bartter F.C., Smith H. The effect of high-sodium and low-sodium intakes on blood pressure and other related variables in human subjects with idiopathic hypertension. Am. J. Med. 1978;64:193–198. doi: 10.1016/0002-9343(78)90045-1. [PubMed] [CrossRef] [Google Scholar]

34. Weinberger M.H., Miller J.Z., Luft F.C., Grim C.E., Fineberg N.S. Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension. 1986;8:II127–II134. doi: 10.1161/01.HYP.8.6_Pt_2.II127. [PubMed] [CrossRef] [Google Scholar]

35. Coruzzi P., Parati G., Brambilla L., Brambilla V., Gualerzi M., Novarini A., Castiglioni P., Di Rienzo M. Effects of salt sensitivity on neural cardiovascular regulation in essential hypertension. Hypertension. 2005;46:1321–1326. doi: 10.1161/01.HYP.0000189183.50301.5c. [PubMed] [CrossRef] [Google Scholar]

36. Castiglioni P., Parati G., Lazzeroni D., Bini M., Faini A., Brambilla L., Brambilla V., Coruzzi P. Hemodynamic and autonomic response to different salt intakes in normotensive individuals. J. Am. Heart Assoc. 2016;5:e003736. doi: 10.1161/JAHA.116.003736. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Galletti F., Ferrara I., Stinga F., Iacone R., Noviello F., Strazzullo P. Evaluation of a rapid protocol for the assessment of salt sensitivity against the blood pressure response to dietary sodium chloride restriction. Am. J. Hypertens. 1997;10:462–466. doi: 10.1016/S0895-7061(96)00491-8. [PubMed] [CrossRef] [Google Scholar]

38. Castiglioni P., Parati G., Brambilla L., Brambilla V., Gualerzi M., Di Rienzo M., Coruzzi P. Detecting sodium-sensitivity in hypertensive patients: Information from 24-hour ambulatory blood pressure monitoring. Hypertension. 2011;57:180–185. doi: 10.1161/HYPERTENSIONAHA.110.158972. [PubMed] [CrossRef] [Google Scholar]

39. Barba G., Galletti F., Cappuccio F.P., Siani A., Venezia A., Versiero M., Della Valle E., Sorrentino P., Tarantino G., Farinaro E., et al. Incidence of hypertension in individuals with different blood pressure salt-sensitivity: Results of a 15-year follow-up study. J. Hypertens. 2007;25:1465–1471. doi: 10.1097/HJH.0b013e3281139ebd. [PubMed] [CrossRef] [Google Scholar]

40. Bihorac A., Tezcan H., Ozener C., Oktay A., Akoglu E. Association between salt sensitivity and target organ damage in essential hypertension. Am. J. Hypertens. 2000;13:864–872. doi: 10.1016/S0895-7061(00)00253-3. [PubMed] [CrossRef] [Google Scholar]

41. Morimoto A., Uzu T., Fujii T., Nishimura M., Kuroda S., Nakamura S., Inenaga T., Kimura G. Sodium sensitivity and cardiovascular events in patients with essential hypertension. Lancet. 1997;350:1734–1737. doi: 10.1016/S0140-6736(97)05189-1. [PubMed] [CrossRef] [Google Scholar]

42. Elliott P., Walker L.L., Little M.P., Blair-West J.R., Shade R.E., Lee D.R., Rouquet P., Leroy E., Jeunemaitre X., Ardaillou R., et al. Change in salt intake affects blood pressure of chimpanzees: Implications for human populations. Circulation. 2007;116:1563–1568. doi: 10.1161/CIRCULATIONAHA.106.675579. [PubMed] [CrossRef] [Google Scholar]

43. Galletti F., Strazzullo P. The blood pressure-salt sensitivity paradigm: Pathophysiologically sound yet of no practical value. Nephrol. Dial. Transplant. 2016;31:1386–1391. doi: 10.1093/ndt/gfw295. [PubMed] [CrossRef] [Google Scholar]

44. Aburto N.J., Ziolkovska A., Hooper L., Elliott P., Cappuccio F.P., Meerpohl J.J. Effect of lower sodium intake on health: Systematic review and meta-analyses. BMJ. 2013;346:f1326. doi: 10.1136/bmj.f1326. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Frohlich E.D. Hemodynamic differences between black patients and white patients with essential hypertension. State of the art lecture. Hypertension. 1990;15:675–680. doi: 10.1161/01.HYP.15.6.675. [PubMed] [CrossRef] [Google Scholar]

46. Wedler B., Brier M.E., Wiersbitzky M., Gruska S., Wolf E., Kallwellis R., Aronoff G.R., Luft F.C. Sodium kinetics in salt-sensitive and salt-resistant normotensive and hypertensive subjects. J. Hypertens. 1992;10:663–669. doi: 10.1097/00004872-199207000-00010. [PubMed] [CrossRef] [Google Scholar]

47. Rocchini A.P., Key J., Bondie D., Chico R., Moorehead C., Katch V., Martin M. The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents. N. Engl. J. Med. 1989;321:580–585. doi: 10.1056/NEJM198908313210905. [PubMed] [CrossRef] [Google Scholar]

48. Strazzullo P., Barbato A., Galletti F., Barba G., Siani A., Iacone R., D’Elia L., Russo O., Versiero M., Farinaro E., et al. Abnormalities of renal sodium handling in the metabolic syndrome. Results of the Olivetti heart study. J. Hypertens. 2006;24:1633–1639. doi: 10.1097/01.hjh.0000239300.48130.07. [PubMed] [CrossRef] [Google Scholar]

49. Barba G., Russo O., Siani A., Iacone R., Farinaro E., Gerardi M.C., Russo P., Della Valle E., Strazzullo P. Plasma leptin and blood pressure in men: Graded association independent of body mass and fat pattern. Obes. Res. 2003;11:160–166. doi: 10.1038/oby.2003.25. [PubMed] [CrossRef] [Google Scholar]

50. Guyton A.C. Blood pressure control—Special role of the kidneys and body fluids. Science. 1991;252:1813–1816. doi: 10.1126/science.2063193. [PubMed] [CrossRef] [Google Scholar]

51. Heer M., Baisch F., Kropp J., Gerzer R., Drummer C. High dietary sodium chloride consumption may not induce body fluid retention in humans. Am. J. Physiol. Physiol. 2000;278:F585–F595. doi: 10.1152/ajprenal.2000.278.4.F585. [PubMed] [CrossRef] [Google Scholar]

52. Titze J., Bauer K., Schafflhuber M., Dietsch P., Lang R., Schwind K.H., Luft F.C., Eckardt K.U., Hilgers K.F. Internal sodium balance in DOCA-salt rats: A body composition study. Am. J. Physiol. Physiol. 2005;289:F793–F802. doi: 10.1152/ajprenal.00096.2005. [PubMed] [CrossRef] [Google Scholar]

53. Laffer C.L., Scott R.C., 3rd, Titze J.M., Luft F.C., Elijovich F. Hemodynamics and salt-and-water balance link sodium storage and vascular dysfunction in salt-sensitive subjects. Hypertension. 2016;68:195–203. doi: 10.1161/HYPERTENSIONAHA.116.07289. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Schmidlin O., Forman A., Leone A., Sebastian A., Morris R.C., Jr. Salt sensitivity in blacks: Evidence that the initial pressor effect of NaCl involves inhibition of vasodilatation by asymmetrical dimethylarginine. Hypertension. 2011;58:380–385. doi: 10.1161/HYPERTENSIONAHA.111.170175. [PubMed] [CrossRef] [Google Scholar]

55. Morris R.C., Jr., Schmidlin O., Sebastian A., Tanaka M., Kurtz T.W. Vasodysfunction that involves renal vasodysfunction, not abnormally increased renal retention of sodium, accounts for the initiation of salt-induced hypertension. Circulation. 2016;133:881–893. doi: 10.1161/CIRCULATIONAHA.115.017923. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Kurtz T.W., DiCarlo S.E., Pravenec M., Schmidlin O., Tanaka M., Morris R.C., Jr. An alternative hypothesis to the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension. Kidney Int. 2016;90:965–973. doi: 10.1016/j.kint.2016.05.032. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Bech J.N., Nielsen C.B., Ivarsen P., Jensen K.T., Pedersen E.B. Dietary sodium affects systemic and renal hemodynamic response to NO inhibition in healthy humans. Am. J. Physiol. 1998;274:F914–F923. doi: 10.1152/ajprenal.1998.274.5.F914. [PubMed] [CrossRef] [Google Scholar]

58. Van Paassen P., de Zeeuw D., Navis G., de Jong P.E. Does the renin-angiotensin system determine the renal and systemic hemodynamic response to sodium in patients with essential hypertension? Hypertension. 1996;27:202–208. doi: 10.1161/01.HYP.27.2.202. [PubMed] [CrossRef] [Google Scholar]

59. Parati G., Di Rienzo M., Bertinieri G., Pomidossi G., Casadei R., Groppelli A., Pedotti A., Zanchetti A., Mancia G. Evaluation of the baroreceptor-heart rate reflex by 24-hour intra-arterial blood pressure monitoring in humans. Hypertension. 1988;12:214–222. doi: 10.1161/01.HYP.12.2.214. [PubMed] [CrossRef] [Google Scholar]

60. Di Rienzo M., Parati G., Castiglioni P., Tordi R., Mancia G., Pedotti A. Baroreflex effectiveness index: An additional measure of baroreflex control of heart rate in daily life. Am. J. Physiol. Integr. Comp. Physiol. 2001;280:R744–R751. doi: 10.1152/ajpregu.2001.280.3.R744. [PubMed] [CrossRef] [Google Scholar]

61. Parati G., Saul J.P., Di Rienzo M., Mancia G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension. 1995;25:1276–1286. doi: 10.1161/01.HYP.25.6.1276. [PubMed] [CrossRef] [Google Scholar]

62. Campese V.M., Romoff M.S., Levitan D., Saglikes Y., Friedler R.M., Massry S.G. Abnormal relationship between sodium intake and sympathetic nervous system activity in salt-sensitive patients with essential hypertension. Kidney Int. 1982;21:371–378. doi: 10.1038/ki.1982.32. [PubMed] [CrossRef] [Google Scholar]

63. Mark A., Mancia G. Cardiopulmonary baroreflexes in humans. In: Shepherd J.T., Abboud F.M., editors. Handbook of Physiology. The Cardiovascular System. American Physiological Society; Bethesda, MD, USA: 1983. pp. 795–813. [Google Scholar]

64. Mancia G., Parati G., Pomidossi G., Casadei R., Di Rienzo M., Zanchetti A. Arterial baroreflexes and blood pressure and heart rate variabilities in humans. Hypertension. 1986;8:147–153. doi: 10.1161/01.HYP.8.2.147. [PubMed] [CrossRef] [Google Scholar]

65. Parlow J., Viale J.P., Annat G., Hughson R., Quintin L. Spontaneous cardiac baroreflex in humans. Comparison with drug-induced responses. Hypertension. 1995;25:1058–1068. doi: 10.1161/01.HYP.25.5.1058. [PubMed] [CrossRef] [Google Scholar]

66. Eckberg D.L., Drabinsky M., Braunwald E. Defective cardiac parasympathetic control in patients with heart disease. N. Engl. J. Med. 1971;285:877–883. doi: 10.1056/NEJM197110142851602. [PubMed] [CrossRef] [Google Scholar]

67. Pagani M., Somers V., Furlan R., Dell’Orto S., Conway J., Baselli G., Cerutti S., Sleight P., Malliani A. Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension. 1988;12:600–610. doi: 10.1161/01.HYP.12.6.600. [PubMed] [CrossRef] [Google Scholar]

68. Berntson G.G., Bigger J.T., Jr., Eckberg D.L., Grossman P., Kaufmann P.G., Malik M., Nagaraja H.N., Porges S.W., Saul J.P., Stone P.H., et al. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology. 1997;34:623–648. doi: 10.1111/j.1469-8986.1997.tb02140.x. [PubMed] [CrossRef] [Google Scholar]

69. Hansen-Smith F.M., Morris L.W., Greene A.S., Lombard J.H. Rapid microvessel rarefaction with elevated salt intake and reduced renal mass hypertension in rats. Circ. Res. 1996;79:324–330. doi: 10.1161/01.RES.79.2.324. [PubMed] [CrossRef] [Google Scholar]

70. Frisbee J.C., Lombard J.H. Development and reversibility of altered skeletal muscle arteriolar structure and reactivity with high salt diet and reduced renal mass hypertension. Microcirculation. 1999;6:215–225. doi: 10.1080/725310756. [PubMed] [CrossRef] [Google Scholar]

71. Zhu J., Drenjancevic-Peric I., McEwen S., Friesema J., Schulta D., Yu M., Roman R.J., Lombard J.H. Role of superoxide and angiotensin II suppression in salt-induced changes in endothelial Ca2+ signaling and NO production in rat aorta. Am. J. Physiol. Heart Circ. Physiol. 2006;291:H929–H938. doi: 10.1152/ajpheart.00692.2005. [PubMed] [CrossRef] [Google Scholar]

72. Wang J., Roman R.J., Falck J.R., de la Cruz L., Lombard J.H. Effects of high-salt diet on CYP450-4A omega-hydroxylase expression and active tone in mesenteric resistance arteries. Am. J. Physiol. Heart Circ. Physiol. 2005;288:H1557–H1565. doi: 10.1152/ajpheart.00755.2004. [PubMed] [CrossRef] [Google Scholar]

73. Lukaszewicz K.M., Falck J.R., Manthati V.L., Lombard J.H. Introgression of Brown Norway CYP4A genes on to the Dahl salt-sensitive background restores vascular function in SS-5(BN) consomic rats. Clin. Sci. 2013;124:333–342. doi: 10.1042/CS20120232. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Abularrage C.J., Sidawy A.N., Aidinian G., Singh N., Weiswasser J.M., Arora S. Evaluation of the microcirculation in vascular disease. J. Vasc. Surg. 2005;42:574–581. doi: 10.1016/j.jvs.2005.05.019. [PubMed] [CrossRef] [Google Scholar]

75. Tzemos N., Lim P.O., Wong S., Struthers A.D., MacDonald T.M. Adverse cardiovascular effects of acute salt loading in young normotensive individuals. Hypertension. 2008;51:1525–1530. doi: 10.1161/HYPERTENSIONAHA.108.109868. [PubMed] [CrossRef] [Google Scholar]

76. Greaney J.L., DuPont J.J., Lennon-Edwards S.L., Sanders P.W., Edwards D.G., Farquhar W.B. Dietary sodium loading impairs microvascular function independent of blood pressure in humans: Role of oxidative stress. J. Physiol. 2012;590:5519–5528. doi: 10.1113/jphysiol.2012.236992. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Cavka A., Jukic I., Ali M., Goslawski M., Bian J.T., Wang E., Drenjancevic I., Phillips S.A. Short-term high salt intake reduces brachial artery and microvascular function in the absence of changes in blood pressure. J. Hypertens. 2016;34:676–684. doi: 10.1097/HJH.0000000000000852. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Rorije N.M.G., Olde Engberink R.H.G., Chahid Y., van Vlies N., van Straalen J.P., van den Born B.H., Verberne H.J., Vogt L. Microvascular permeability after an acute and chronic salt load in healthy subjects: A randomized open-label crossover intervention study. Anesthesiology. 2018;128:352–360. doi: 10.1097/ALN.0000000000001989. [PubMed] [CrossRef] [Google Scholar]

79. Schmidlin O., Sebastian A.F., Morris R.C., Jr. What initiates the pressor effect of salt in salt-sensitive humans? Observations in normotensive blacks. Hypertension. 2007;49:1032–1039. doi: 10.1161/HYPERTENSIONAHA.106.084640. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Jablonski K.L., Racine M.L., Geolfos C.J., Gates P.E., Chonchol M., McQueen M.B., Seals D.R. Dietary sodium restriction reverses vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure. J. Am. Coll. Cardiol. 2013;61:335–343. doi: 10.1016/j.jacc.2012.09.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Kopp C., Linz P., Dahlmann A., Hammon M., Jantsch J., Muller D.N., Schmieder R.E., Cavallaro A., Eckardt K.U., Uder M., et al. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension. 2013;61:635–640. doi: 10.1161/HYPERTENSIONAHA.111.00566. [PubMed] [CrossRef] [Google Scholar]

82. Nijst P., Verbrugge F.H., Grieten L., Dupont M., Steels P., Tang W.H.W., Mullens W. The pathophysiological role of interstitial sodium in heart failure. J. Am. Coll. Cardiol. 2015;65:378–388. doi: 10.1016/j.jacc.2014.11.025. [PubMed] [CrossRef] [Google Scholar]

83. Selvarajah V., Connolly K., McEniery C., Wilkinson I. Skin sodium and hypertension: A paradigm shift? Curr. Hypertens. Rep. 2018;20:94. doi: 10.1007/s11906-018-0892-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Titze J., Krause H., Hecht H., Dietsch P., Rittweger J., Lang R., Kirsch K.A., Hilgers K.F. Reduced osmotically inactive Na storage capacity and hypertension in the Dahl model. Am. J. Physiol. Physiol. 2002;283:F134–F141. doi: 10.1152/ajprenal.00323.2001. [PubMed] [CrossRef] [Google Scholar]

85. Titze J., Lang R., Ilies C., Schwind K.H., Kirsch K.A., Dietsch P., Luft F.C., Hilgers K.F. Osmotically inactive skin Na+ storage in rats. Am. J. Physiol. Physiol. 2003;285:F1108–F1117. doi: 10.1152/ajprenal.00200.2003. [PubMed] [CrossRef] [Google Scholar]

86. Titze J., Shakibaei M., Schafflhuber M., Schulze-Tanzil G., Porst M., Schwind K.H., Dietsch P., Hilgers K.F. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am. J. Physiol. Heart Circ. Physiol. 2004;287:H203–H208. doi: 10.1152/ajpheart.01237.2003. [PubMed] [CrossRef] [Google Scholar]

87. Machnik A., Neuhofer W., Jantsch J., Dahlmann A., Tammela T., Machura K., Park J.K., Beck F.X., Muller D.N., Derer W., et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 2009;15:545–552. doi: 10.1038/nm.1960. [PubMed] [CrossRef] [Google Scholar]

88. Wiig H., Schroder A., Neuhofer W., Jantsch J., Kopp C., Karlsen T.V., Boschmann M., Goss J., Bry M., Rakova N., et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J. Clin. Investig. 2013;123:2803–2815. doi: 10.1172/JCI60113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Machnik A., Dahlmann A., Kopp C., Goss J., Wagner H., van Rooijen N., Eckardt K.U., Muller D.N., Park J.K., Luft F.C., et al. Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats. Hypertension. 2010;55:755–761. doi: 10.1161/HYPERTENSIONAHA.109.143339. [PubMed] [CrossRef] [Google Scholar]

90. He F.J., Marciniak M., Markandu N.D., Antonios T.F., MacGregor G.A. Effect of modest salt reduction on skin capillary rarefaction in white, black, and Asian individuals with mild hypertension. Hypertension. 2010;56:253–259. doi: 10.1161/HYPERTENSIONAHA.110.155747. [PubMed] [CrossRef] [Google Scholar]

91. Helle F., Karlsen T.V., Tenstad O., Titze J., Wiig H. High-salt diet increases hormonal sensitivity in skin pre-capillary resistance vessels. Acta Physiol. 2013;207:577–581. doi: 10.1111/apha.12049. [PubMed] [CrossRef] [Google Scholar]

92. Zhu Q., Hu J., Han W.Q., Zhang F., Li P.L., Wang Z., Li N. Silencing of HIF prolyl-hydroxylase 2 gene in the renal medulla attenuates salt-sensitive hypertension in Dahl S rats. Am. J. Hypertens. 2014;27:107–113. doi: 10.1093/ajh/hpt207. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Safar M., Laurent S., Safavian A., Pannier B., Asmar R. Sodium and large arteries in hypertension. Effects of indapamide. Am. J. Med. 1988;84:15–19. doi: 10.1016/0002-9343(88)90807-8. [PubMed] [CrossRef] [Google Scholar]

94. Blaustein M.P. Sodium ions, calcium ions, blood pressure regulation, and hypertension: A reassessment and a hypothesis. Am. J. Physiol. 1977;232:C165–C173. doi: 10.1152/ajpcell.1977.232.5.C165. [PubMed] [CrossRef] [Google Scholar]

95. Avolio A.P., Deng F.Q., Li W.Q., Luo Y.F., Huang Z.D., Xing L.F., O’Rourke M.F. Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: Comparison between urban and rural communities in China. Circulation. 1985;71:202–210. doi: 10.1161/01.CIR.71.2.202. [PubMed] [CrossRef] [Google Scholar]

96. Avolio A.P., Clyde K.M., Beard T.C., Cooke H.M., Ho K.K., O’Rourke M.F. Improved arterial distensibility in normotensive subjects on a low salt diet. Arteriosclerosis. 1986;6:166–169. doi: 10.1161/01.ATV.6.2.166. [PubMed] [CrossRef] [Google Scholar]

97. Todd A.S., Macginley R.J., Schollum J.B., Johnson R.J., Williams S.M., Sutherland W.H., Mann J.I., Walker R.J. Dietary salt loading impairs arterial vascular reactivity. Am. J. Clin. Nutr. 2010;91:557–564. doi: 10.3945/ajcn.2009.28645. [PubMed] [CrossRef] [Google Scholar]

98. McMahon E.J., Bauer J.D., Hawley C.M., Isbel N.M., Stowasser M., Johnson D.W., Campbell K.L. A randomized trial of dietary sodium restriction in CKD. J. Am. Soc. Nephrol. 2013;24:2096–2103. doi: 10.1681/ASN.2013030285. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Jablonski K.L., Fedorova O.V., Racine M.L., Geolfos C.J., Gates P.E., Chonchol M., Fleenor B.S., Lakatta E.G., Bagrov A.Y., Seals D.R. Dietary sodium restriction and association with urinary marinobufagenin, blood pressure, and aortic stiffness. Clin. J. Am. Soc. Nephrol. 2013;8:1952–1959. doi: 10.2215/CJN.00900113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. He F.J., Marciniak M., Visagie E., Markandu N.D., Anand V., Dalton R.N., MacGregor G.A. Effect of modest salt reduction on blood pressure, urinary albumin, and pulse wave velocity in white, black, and Asian mild hypertensives. Hypertension. 2009;54:482–488. doi: 10.1161/HYPERTENSIONAHA.109.133223. [PubMed] [CrossRef] [Google Scholar]

101. Todd A.S., Macginley R.J., Schollum J.B., Williams S.M., Sutherland W.H., Mann J.I., Walker R.J. Dietary sodium loading in normotensive healthy volunteers does not increase arterial vascular reactivity or blood pressure. Nephrology. 2012;17:249–256. doi: 10.1111/j.1440-1797.2011.01550.x. [PubMed] [CrossRef] [Google Scholar]

102. Dickinson K.M., Keogh J.B., Clifton P.M. Effects of a low-salt diet on flow-mediated dilatation in humans. Am. J. Clin. Nutr. 2009;89:485–490. doi: 10.3945/ajcn.2008.26856. [PubMed] [CrossRef] [Google Scholar]

103. Dickinson K.M., Clifton P.M., Keogh J.B. A reduction of 3 g/day from a usual 9 g/day salt diet improves endothelial function and decreases endothelin-1 in a randomised cross_over study in normotensive overweight and obese subjects. Atherosclerosis. 2014;233:32–38. doi: 10.1016/j.atherosclerosis.2013.11.078. [PubMed] [CrossRef] [Google Scholar]

104. Van der Graaf A.M., Paauw N.D., Toering T.J., Feelisch M., Faas M.M., Sutton T.R., Minnion M., Lefrandt J.D., Scherjon S.A., Franx A., et al. Impaired sodium-dependent adaptation of arterial stiffness in formerly preeclamptic women: The RETAP-vascular study. Am. J. Physiol. Heart Circ. Physiol. 2016;310:H1827–H1833. doi: 10.1152/ajpheart.00010.2016. [PubMed] [CrossRef] [Google Scholar]

105. Suckling R.J., He F.J., Markandu N.D., MacGregor G.A. Modest salt reduction lowers blood pressure and albumin excretion in impaired glucose tolerance and type 2 diabetes mellitus: A randomized double-blind trial. Hypertension. 2016;67:1189–1195. doi: 10.1161/HYPERTENSIONAHA.115.06637. [PubMed] [CrossRef] [Google Scholar]

106. Gijsbers L., Dower J.I., Mensink M., Siebelink E., Bakker S.J., Geleijnse J.M. Effects of sodium and potassium supplementation on blood pressure and arterial stiffness: A fully controlled dietary intervention study. J. Hum. Hypertens. 2015;29:592–598. doi: 10.1038/jhh.2015.3. [PubMed] [CrossRef] [Google Scholar]

107. Pimenta E., Gaddam K.K., Oparil S., Aban I., Husain S., Dell’Italia L.J., Calhoun D.A. Effects of dietary sodium reduction on blood pressure in subjects with resistant hypertension: Results from a randomized trial. Hypertension. 2009;54:475–481. doi: 10.1161/HYPERTENSIONAHA.109.131235. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. D’Elia L., Galletti F., La Fata E., Sabino P., Strazzullo P. Effect of dietary sodium restriction on arterial stiffness: Systematic review and meta-analysis of the randomized controlled trials. J. Hypertens. 2018;36:734–743. doi: 10.1097/HJH.0000000000001604. [PubMed] [CrossRef] [Google Scholar]

109. Salvi P., Palombo C., Salvi G.M., Labat C., Parati G., Benetos A. Left ventricular ejection time, not heart rate, is an independent correlate of aortic pulse wave velocity. J. Appl. Physiol. 2013;115:1610–1617. doi: 10.1152/japplphysiol.00475.2013. [PubMed] [CrossRef] [Google Scholar]

110. Salvi P. Pulse Waves. How Vascular Hemodynamics Affects Blood Pressure. 2nd ed. Springer Nature; Heidelberg, Germany: 2017. [Google Scholar]

111. Matrougui K., Schiavi P., Guez D., Henrion D. High sodium intake decreases pressure-induced (myogenic) tone and flow-induced dilation in resistance arteries from hypertensive rats. Hypertension. 1998;32:176–179. doi: 10.1161/01.HYP.32.1.176. [PubMed] [CrossRef] [Google Scholar]

112. Ying W.Z., Sanders P.W. Dietary salt increases endothelial nitric oxide synthase and TGF-beta1 in rat aortic endothelium. Am. J. Physiol. 1999;277:H1293–H1298. [PubMed] [Google Scholar]

113. Edwards D.G., Farquhar W.B. Vascular effects of dietary salt. Curr. Opin. Nephrol. Hypertens. 2015;24:8–13. doi: 10.1097/MNH.0000000000000089. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Harvey A., Montezano A.C., Lopes R.A., Rios F., Touyz R.M. Vascular fibrosis in aging and hypertension: Molecular mechanisms and clinical implications. Can. J. Cardiol. 2016;32:659–668. doi: 10.1016/j.cjca.2016.02.070. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Wang M., Zhao D., Spinetti G., Zhang J., Jiang L.Q., Pintus G., Monticone R., Lakatta E.G. Matrix metalloproteinase 2 activation of transforming growth factor-beta1 (TGF-beta1) and TGF-beta1-type II receptor signaling within the aged arterial wall. Arter. Thromb. Vasc. Biol. 2006;26:1503–1509. doi: 10.1161/01.ATV.0000225777.58488.f2. [PubMed] [CrossRef] [Google Scholar]

116. Duncan M.R., Frazier K.S., Abramson S., Williams S., Klapper H., Huang X., Grotendorst G.R. Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: Down-regulation by cAMP. FASEB J. 1999;13:1774–1786. doi: 10.1096/fasebj.13.13.1774. [PubMed] [CrossRef] [Google Scholar]

117. Safar M.E., Thuilliez C., Richard V., Benetos A. Pressure-independent contribution of sodium to large artery structure and function in hypertension. Cardiovasc. Res. 2000;46:269–276. doi: 10.1016/S0008-6363(99)00426-5. [PubMed] [CrossRef] [Google Scholar]

118. Prakobwong S., Yongvanit P., Hiraku Y., Pairojkul C., Sithithaworn P., Pinlaor P., Pinlaor S. Involvement of MMP-9 in peribiliary fibrosis and cholangiocarcinogenesis via Rac1-dependent DNA damage in a hamster model. Int. J. Cancer. 2010;127:2576–2587. doi: 10.1002/ijc.25266. [PubMed] [CrossRef] [Google Scholar]

119. Newby A.C. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol. Rev. 2005;85:1–31. doi: 10.1152/physrev.00048.2003. [PubMed] [CrossRef] [Google Scholar]

120. Wang M., Kim S.H., Monticone R.E., Lakatta E.G. Matrix metalloproteinases promote arterial remodeling in aging, hypertension, and atherosclerosis. Hypertension. 2015;65:698–703. doi: 10.1161/HYPERTENSIONAHA.114.03618. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Pons M., Cousins S.W., Alcazar O., Striker G.E., Marin-Castano M.E. Angiotensin II-induced MMP-2 activity and MMP-14 and basigin protein expression are mediated via the angiotensin II receptor type 1-mitogen-activated protein kinase 1 pathway in retinal pigment epithelium: Implications for age-related macular degeneration. Am. J. Pathol. 2011;178:2665–2681. doi: 10.1016/j.ajpath.2011.02.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Savoia C., Touyz R.M., Amiri F., Schiffrin E.L. Selective mineralocorticoid receptor blocker eplerenone reduces resistance artery stiffness in hypertensive patients. Hypertension. 2008;51:432–439. doi: 10.1161/HYPERTENSIONAHA.107.103267. [PubMed] [CrossRef] [Google Scholar]

123. Wang D.H., Du Y. Regulation of vascular type 1 angiotensin II receptor in hypertension and sodium loading: Role of angiotensin II. J. Hypertens. 1998;16:467–475. doi: 10.1097/00004872-199816040-00008. [PubMed] [CrossRef] [Google Scholar]

124. Benetos A., Gautier S., Ricard S., Topouchian J., Asmar R., Poirier O., Larosa E., Guize L., Safar M., Soubrier F., et al. Influence of angiotensin-converting enzyme and angiotensin II type 1 receptor gene polymorphisms on aortic stiffness in normotensive and hypertensive patients. Circulation. 1996;94:698–703. doi: 10.1161/01.CIR.94.4.698. [PubMed] [CrossRef] [Google Scholar]

125. Pojoga L., Gautier S., Blanc H., Guyene T.T., Poirier O., Cambien F., Benetos A. Genetic determination of plasma aldosterone levels in essential hypertension. Am. J. Hypertens. 1998;11:856–860. doi: 10.1016/S0895-7061(98)00048-X. [PubMed] [CrossRef] [Google Scholar]

126. Mercier N., Labat C., Louis H., Cattan V., Benetos A., Safar M.E., Lacolley P. Sodium, arterial stiffness, and cardiovascular mortality in hypertensive rats. Am. J. Hypertens. 2007;20:319–325. doi: 10.1016/j.amjhyper.2006.09.002. [PubMed] [CrossRef] [Google Scholar]

127. Safar M.E., Temmar M., Kakou A., Lacolley P., Thornton S.N. Sodium intake and vascular stiffness in hypertension. Hypertension. 2009;54:203–209. doi: 10.1161/HYPERTENSIONAHA.109.129585. [PubMed] [CrossRef] [Google Scholar]

How long will a high sodium meal affect blood pressure?

Researchers from the Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia report that when a high salt meal was consumed blood vessels widened about half as much as for low salt meal, though they noted that these effects passed after around two hours when normal functioning was restored.

How much does salt raise blood pressure fast?

Increase your daily intake of salt to 5 g (equals 5,000 mg or 1 tsp). To do this: Put 1 teaspoon of salt in an empty salt shaker and use it throughout the day; OR. Read nutrition labels on prepared foods to estimate the salt in your daily diet for a total of 5 grams per day.

How do I lower my blood pressure after eating salty food?

What to do if you've eaten too much salt.
First, make sure you drink sufficient amounts of water to help your body regain its desired sodium-to-water ratio ( 2 , 7 )..
You can also try eating foods that are rich in potassium, such as fruits, vegetables, legumes, nuts, seeds, and dairy..